If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2-18y=0
a = 10; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·10·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*10}=\frac{0}{20} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*10}=\frac{36}{20} =1+4/5 $
| b/5-5=-14 | | 2x62-4=-254 | | 6x-4=4x-14 | | (5x+3)/7=11/16 | | -8(8n-8)=0 | | 1/2n-3=2/3n+4 | | 3.5w=28 | | (3x+12)-7=(x5)+2x | | 8w=73 | | 24*x+(7/1.7)(x/2)=36(1.7-x)+(7/1.7)*(1.7-x)/2 | | 11x-8=10x- | | m+3/2=7/10 | | (x-6)^2/2+4=36 | | p-5.1=-2p.4 | | 5a-4a=13 | | 2n+0.6=3n+0,1 | | p-5.1=-2 | | 780=8+x(2x-6) | | 37=3v-8 | | 2.8+3.9r=H | | -25-3r=-5(1+4r)-3 | | 16+y=31 | | 9+10x-7=3x+4+5x | | 8x-4=8(6x-9) | | 12=-4m | | 5(7x-6)=2+3x | | (3x)+(6x-5)+x=180 | | 2(f-4)=28 | | 75=(4x-25)=180 | | 300-(x/15)=0 | | -8x+3(1+8x)=35+8x | | (2x+4)+48=90 |